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ABSTRACT  

A finite element method involving Galerkin method with sextic B-splines as basis functions has been developed 

to solve a general tenth order boundary value problem. The basis functions are redefined into a new set of basis functions 

which vanish on the boundary where the Dirichlet, Neumann, second order derivative, third order derivative and fourth 

order derivative types of boundary conditions are prescribed. The proposed method was applied to solve several examples 

of tenth order linear and nonlinear boundary value problems. The solution of a nonlinear boundary value problem has been 

obtained as the limit of a sequence of solution of linear boundary value problems generated by quasilinearization 

technique. The obtained numerical results are compared with the exact solutions available in the literature. 

KEYWORDS:  Absolute Error, Basis Function, Galerkin Method, Sextic B-Spline, Tenth Order Boundary Value 

Problem 

INTRODUCTION 

 In this paper, we consider a general tenth order linear boundary value problem given by  

(10) (9) (8) (7) (6) (5) (4)
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+ + + + + +
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                       (1)  

Subject to boundary conditions 

(4) (4)
0 0 1 1 2 2 3 3 4 4( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) .y c A y d C y c A y d C y c A y c C y c A y c C y c A y d C′ ′ ′′ ′′ ′′′ ′′′= = = = = = = = = =           (2)  

Where A0, C0, A1, C1, A2, C2, A3, C3, A4, C4 are finite real constants and a0(x), a1(x), a2(x), a3(x), a4(x), a5(x), a6(x), 

a7(x), a8(x), a9(x), a10(x), b(x) are all continuous functions defined on the interval [c, d].  

Generally, this type of tenth order boundary value problem arises in the study of hydrodynamics and hydro 

magnetic stability, mathematical modeling of the viscoelastic flows and other areas of applied mathematics, physics, 

engineering sciences. When an infinite horizontal layer of fluid is heated from below and is under the action of rotation, 

instability sets in. When this instability is an ordinary convection, the ordinary differential equation is of sixth order.              

When the instability sets in as over stability, it is modeled by an eighth order ordinary differential equation. Suppose, now 

that a uniform magnetic field is also applied across the fluid in the same direction as gravity. When instability sets now as 

ordinary convection, it is modeled by tenth order boundary value problem [1]. 

The existence and uniqueness of solutions of these problems have been discussed by Agarwal [2]. The boundary 

value problems of higher order differential equations have been investigated due to their mathematical importance and the 
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potential for applications in diversified applied sciences. Solving these type of boundary value problems analytically is 

very difficult and analytical solutions are available in very rare cases. Very few authors have attempted the numerical 

solution of tenth order boundary value problems. Some of the numerical methods have been developed overs the years to 

approximate the solution for these type of boundary value problems. Twizell et al. [3] developed numerical methods for 

eight, tenth, twelfth order eigen value problems arising in thermal instability. Siddiqi and Twizell [4] developed the 

solution of special case of tenth order boundary value problems using tenth degree splines. Ghazala Akram and                   

Siddiqi [5, 6] presented the solution of special case of tenth order boundary value problems using an eleventh degree 

polynomial and non-polynomial splines. Scott and Watts [7] applied a combination of superposition and 

orthonormalization to solve a linear boundary value problem. Scott and Watts [8] described several computer codes that 

were developed using superposition and orthonormalization technique and invariant imbedding. Rashidinia et al. [9] 

presented the solution of special case of tenth order boundary value problems using a eleventh degree non-polynomial 

splines technique. Dijidejeli and Twizell [10] derived numerical method for special case of boundary value problems of 

order 2m. Laminni et al. [11] developed and analyzed numerical method for approximating the solution of linear boundary 

value problems. Ramadan et al. [12] have applied non-polynomial spline functions for approximating the solutions of 

(2 )thµ order two point boundary value problems. Erturk and Momani [13] applied Differential transform method to 

construct the solution for tenth order boundary value problems. Wazwaz [14] presented a modified Adomain 

decomposition method for tenth and twelfth order boundary value problems. Farajeyan and Maleki [15] have applied a 

eleventh degree nonpolynomial off step spline technique. Noor et al. [16] developed a reliable algorithm for solving special 

case of tenth order boundary value problems. Gang and Li [17] presented the solution of special case of tenth order 

boundary value problems by using Variational iteration method. Barai et al. [18] applied Homotopy perturbation method 

for solving tenth order boundary value problems. Mohyudin and Ahmet [19] have applied modified Variational iteration 

method for solving tenth and ninth order boundary value problems. Siddiqi et al. [20] presented the solution of special case 

of tenth order boundary value problems by using the Variational iteration method. Kasi Viswanadham and                  

Showri Raju [21] developed a quintic B-spline Collocation method for solving a general tenth order boundary value 

problem. So far, tenth order boundary value problems have not been solved by using Galerkin method with                     

sextic B-splines. This motivated us to solve a general tenth order boundary value problem by Galerkin method with              

sextic B-splines. The proposed method is tested on several linear and nonlinear boundary value problems. The solution to a 

nonlinear problem has been obtained as the limit of a sequence of solution of linear problems generated by the 

quasilinearization technique [22].  

JUSTIFICATION FOR USING GALERKIN METHOD 

For the few decades, the finite element method (FEM) has become very powerful, useful tool to solve the 

boundary value problems in the complex geometry. In FEM, the approximate solution can be written as a linear 

combination of basis functions which constitute a basis for the approximation space under consideration. FEM involves 

variational methods like Rayleigh Ritz, Galerkin, Petrov-Galerkin, Least Squares and Collocation etc. 

In Galerkin method, the residual of approximation is made orthogonal to the basis functions. When one uses 

Galerkin method, a weak form of approximation solution for a given differential equation exists and is unique under 

appropriate conditions [23, 24] irrespective of properties of a given differential operator. Further, a weak solution also 

tends to a classical solution of given differential equation, provided sufficient attention is given to boundary                
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conditions [25]. That means the basis functions should vanish on the boundary where the Dirichlet type of boundary 

conditions are prescribed. Hence in this paper we employed the use of Galerkin method with sextic B-splines as basis 

functions to approximate the solution of tenth order boundary value problems. 

DESCRIPTION OF THE METHOD 

Definition of Sextic B-Spline: The sextic B-splines are defined in [26-28]. The existence of sextic spline 

interpolate s(x) to a function in a closed interval [c, d] for spaced knots (need not be evenly spaced) of a 

partition dxxxxc nn =<<<<= −110 ...  is established by constructing it. The construction of s(x) is done with the 

help of the sextic B-splines. Introduce twelve additional knots x-6, x-5, x-4, x-3, x-2, x-1, xn+1, xn+2, xn+3, xn+4, xn+5 and xn+6 in 

such a way that 

 x-6<x-5<x-4< x-3<x-2<x-1<x0 and xn<xn+1<xn+2<xn+3<xn+4<xn+5<xn+6. 

Now the sextic B-splines sxBi )'(  are defined by 
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where {B-3(x), B-2(x), B-1(x), B0(x), B1(x),…,Bn-1(x), Bn(x), Bn+1(x), Bn+2(x)} forms a basis for the space6( )S π  of 

sextic polynomial splines. Schoenberg [28] has proved that sextic B-splines are the unique nonzero splines of smallest 

compact support with the knots at 

x-6<x-5<x-4<x-3<x-2<x-1<x0<x1<…<xn-1<xn<xn+1<xn+2<xn+3<xn+4<xn+5<xn+6.  

To solve the boundary value problem (1) and (2) by the Galerkin method with sextic B-splines as basis functions, 

we define the approximation for y(x) as 

2

3

( ) ( )
n

j j
j

y x B xα
+

=−
=∑                                                                                                                                               (3) 

where ,
j sα  are the nodal parameters to be determined. In Galerkin method, the basis functions should vanish on 

the boundary where the Dirichlet type of boundary conditions are specified. In the set of sextic B-splines {B-3(x), B-2(x),   

B-1(x), B0(x),…, Bn(x), Bn+1(x), Bn+2(x)}, the basis functions B-3(x), B-2(x), B-1(x), B0(x), B1(x), B2(x), Bn-3(x), Bn-2(x), Bn-1(x), 

Bn(x), Bn+1(x) and Bn+2(x) do not vanish at one of the boundary points. So, there is a necessity of redefining the basis 

functions into a new set of basis functions which vanish on the boundary where the Dirichlet type of boundary conditions 

are specified. Since, we are approximating the tenth order boundary value problem by sextic B-splines polynomial, we 
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redefine the basis functions into a new set of basis functions which vanish on the boundary where the Dirichlet, Neumann, 

second order derivative, third order derivative and fourth order derivative types of boundary conditions are prescribed.                  

The procedure for redefining of the basis functions is as follows. 

Using the definition of sextic B-splines and the Dirichlet boundary conditions of (2), we get the approximate 

solution at the boundary points as  

0 0 3 3 0 2 2 0 1 1 0 0 0 0 1 1 0 2 2 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A y c y x B x B x B x B x B x B xα α α α α α− − − − − −= = = + + + + +                             (4)  

0 3 3 2 2 1 1 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n n n n n n n n n n n n nC y d y x B x B x B x B x B x B xα α α α α α− − − − − − + + + += = = + + + + +                  (5)  

Eliminating 3α−  and 2+nα from the equations (3), (4) and (5), we get 

1

1
2

( ) ( ) ( )
n

j j
j

y x w x P xα
+

=−
= +∑                                                                                                                                (6) 
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                                                         (8)  

Using the Neumann boundary conditions of (2) to the approximate solution y(x) given by (6), we get  

1 0 1 0 2 2 0 1 1 0 0 0 0 1 1 0 2 2 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A y c y x w x P x P x P x P x P xα α α α α− − − −′ ′ ′ ′ ′ ′ ′ ′= = = + + + + +                            (9)  

1 1 3 3 2 2 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n n n n n n n n n n nC y d y x w x P x P x P x P x P xα α α α α− − − − − − + +′ ′ ′ ′ ′ ′ ′ ′= = = + + + + +                         (10)  

Eliminating 2α− and 1+nα  from the equations (6), (9) and (10), we get the approximation for y(x) as  
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                                                                         (13)  
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Using the second order derivative boundary conditions of (2) to the approximate solution y(x) given by (11),            

we get  

2 0 2 0 1 1 0 0 0 0 1 1 0 2 2 0( ) ( ) ( ) ( ) ( ) ( ) ( )A y c y x w x Q x Q x Q x Q xα α α α− −′′ ′′ ′′ ′′ ′′ ′′ ′′= = = + + + +                                          (14)  

2 2 3 3 2 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n n n n n n n nC y d y x w x Q x Q x Q x Q xα α α α− − − − − −′′ ′′ ′′ ′′ ′′ ′′ ′′= = = + + + +                         (15)  

Eliminating 1α− and nα  from the approximations (11), (14) and (15), we get the approximation for y(x) as  
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                                                                          (18)  

Using the third order derivative boundary conditions of (2) to the approximate solution y(x) given by (16), we get  

3 0 3 0 0 0 0 1 1 0 2 2 0( ) ( ) ( ) ( ) ( ) ( )A y c y x w x R x R x R xα α α′′′ ′′′ ′′′ ′′′′′′ ′′′= = = + + +                                             (19)  

3 3 3 3 2 2 1 1( ) ( ) ( ) ( ) ( ) ( )n n n n n n n n n n nC y d y x w x R x R x R xα α α− − − − − −
′′′′′′ ′′′ ′′′ ′′′ ′′′= = = + + +                                 (20)  

Eliminating 0α and 1nα −  from the equations (16), (19) and (20), we get the approximation for y(x) as  
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and 3 3 0 3 3
4 3 0 1
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                                                          (23) 

Using the fourth order derivative boundary conditions of (2) to the approximate solution y(x) given by (21),             

we get  
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(4) (4) (4) (4) (4)
4 0 4 0 1 1 2 2 00( ) ( ) ( ) ( ) ( )A y c y x w x S x S xα α= = = + +                                                                   (24)  

(4) (4) (4) (4) (4)
4 4 3 3 2 2( ) ( ) ( ) ( ) ( )n n n n n n n nC y d y x w x S x S xα α− − − −= = = + +                                                          (25) 

Eliminating 1α and 2nα −  from the equations (21), (24) and (25), we get the approximation for y(x) as  
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Now the new set of basis functions for the approximation y(x) is{ ( ), 2,..., 3}jB x j n= −% . Applying the 

Galerkin method to (1) with a new set of basis functions, we get 
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                                   (29)  

Integrating by parts the first five terms on the left hand side of (29) and after applying the boundary conditions 

prescribed in (2), we get  
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Substituting (30) to (34) in (29) and using the approximation for y(x) given in (26), and after rearranging the terms 

for resulting equations, we get a system of equations in the matrix form as 

α =A B                                                                                                                                                                (35) 

where [ ];ija=A  

0
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x
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                 (36)  
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 and 32 3 .[ ]T
nα α α α −= …  

PROCEDURE TO FIND A SOLUTION FOR NODAL PARAMETER 

A typical integral element in the matrix A  is 

1

0

n

m
m

I
−

=
∑  

where 
1

( ) ( ) ( )
m

m

x

m i jx
I r x r x Z x dx

+= ∫  and ( ), ( )i jr x r x  are the sextic B-spline basis functions or their 

derivatives. It may be noted that 0mI =  if 3 4 3 4 1( , ) ( , ) ( , )i i j j m mx x x x x x− + − + +∩ ∩ = ∅ . To evaluate eachmI ,                  

we employed 7-point Gauss-Legendre quadrature formula. Thus the stiffness matrix A  is a thirteen diagonal band matrix. 

The nodal parameter vector α  has been obtained from the system α =A B  by using a band matrix solution package.   

We have used the FORTRAN-90 program to solve the boundary value problems (1)-(2) by the proposed method. 

NUMERICAL RESULTS 

To test the efficiency of the proposed method for solving the tenth order boundary value problems of the                 

types (1) and (2), we considered three linear boundary value problems and three nonlinear boundary value problems.           

Numerical results for each problem are presented in tabular forms and compared with the exact solutions available in the 

literature. 

Example 1: Consider the linear boundary value problem 
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(10) 5 10cos 4( 1)sin , 0 1y y x x x x+ = + − < <                                                                                     (38)  

Subject to (0) (1) 0,y y= = (0) 1, (1) sin1,y y′ ′= − =  (0) 2, (1) 2cos1,y y′′ ′′= =  

(0) 1, (1) 3sin1,y y′′′ ′′′= = −  (4) (4)(0) 4, (1) 4cos1y y= − = − .  

The exact solution for the above problem is ( 1)sin .y x x= −  

The proposed method is tested on this problem where the domain [0, 1] is divided into 10 equal subintervals.      

The obtained numerical results for this problem are given in Table 1. The maximum absolute error obtained by the 

proposed method is 3.516674x10-6. 

Example 2: Consider the linear boundary value problem 

(10) 2 3( 2 ) 10cos ( 1) sin , 1 1y x x y x x x x− − = − − − ≤ ≤                                                                    (39)  

subject to  

( 1) 2sin1,y − = (1) 0,y = ( 1) 2cos1 sin1,y′ − = − − (1) sin1,y′ = ( 1) 2cos1 2sin1,y′′ − = − (1) 2cos1,y′′ =  

( 1) 2cos1 3sin1,y′′′ − = + (1) 3sin1,y′′′ = − (4)( 1) 4cos1 2sin1,y − = − + (4)(1) 4cos1.y = −  

The exact solution for the above problem is ( 1)sin .y x x= −   

The proposed method is tested on this problem where the domain [-1, 1] is divided into 10 equal subintervals.   

The obtained numerical results for this problem are given in Table 2. The maximum absolute error obtained by the 

proposed method is 2.441257x10-5.  

Table 1: Numerical Results for Example 1 

x Exact Solution Absolute Error by 
Proposed Method 

0.1 -8.985008E-02 1.788139E-07 
0.2 -1.589355E-01 1.192093E-07 
0.3 -2.068641E-01 2.875924E-06 
0.4 -2.336510E-01 3.606081E-06 
0.5 -2.397128E-01 2.443790E-06 
0.6 -2.258570E-01 3.516674E-06 
0.7 -1.932653E-01 2.250075E-06 
0.8 -1.434712E-01 1.639128E-06 
0.9 -7.833266E-02 2.145767E-06 

 
Table 2: Numerical Results for Example 2 

x Exact Solution 
Absolute Error by 
Proposed Method 

-0.8 1.291241 9.536743E-07 
-0.6 9.034280E-01 2.205372E-06 
-0.4 5.451856E-01 8.761883E-06 
-0.2 2.384032E-01 1.777709E-05 
0.0 0.0000000000 2.441257E-05 
0.2 -1.589355E-01 2.214313E-05 
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Table 2: Contd., 
0.4 -2.336510E-01 1.828372E-05 
0.6 -2.258570E-01 1.232326E-05 
0.8 -1.434712E-01 5.990267E-06 

 
Example 3: Consider the linear boundary value problem 

(10) 2( 8 ) , 0 1xy y xy x x e x′′− + = − + − < <                                                                                               (40)  

subject to (0) 1, (1) 0, (0) 0, (1) ,y y y y e′ ′= = = = − (0) 1,y′′ =− (1) 2 ,y e′′ = −  

(0) 2,y′′′ = −  (1) 3 ,y e′′′ = −  (4) (4)(0) 3, (1) 4 .y y e=− =−  

The exact solution for the above problem is (1 ) .xy x e= −   

The proposed method is tested on this problem where the domain [0, 1] is divided into 10 equal subintervals.             

The obtained numerical results for this problem are given in Table 3. The maximum absolute error obtained by the 

proposed method is 2.372265x10-5. 

Example 4: Consider the nonlinear boundary value problem 

(10) 2 3 , 0 1x x xy e y e e x− − −+ = + < <                                                                                                  (41)  

subject to 1 1(0 ) 1, (1) , (0 ) 1, (1) ,y y e y y e− −′ ′= = = − = − 1( 0 ) 1, (1) ,y y e−′′ ′′= =  

1(0) 1, (1) ,y y e−′′′ ′′′= − = − ( 4 ) ( 4 ) 1(0 ) 1, (1) .y y e−= =  

The exact solution for the above problem is y = e-x.  

 The nonlinear boundary value problem (41) is converted into a sequence of linear boundary value problems 

generated by quasilinearization technique [22] as 

(1 0 ) 2 3
( 1) ( ) ( 1 ) ( )[ 2 ] [ ] 0 ,1, 2 , 3, . ., .x x x x
n n n ny y e y y e e e n− − − −

+ ++ = + + =                                                    (42) 

subject to 1
( 1) ( 1)(0 ) 1, (1) ,n ny y e−

+ += = 1
( 1) ( 1 )(0 ) 1, (1) ,n ny y e−

+ +′ ′= − = − ( 1) (0 ) 1,ny +′′ = 1
( 1 ) (1) ,ny e−

+′′ =  

( 1)(0) 1,ny +′′′ = −  1
( 1)(1) ,ny e−

+′′′ = −  (4) (4) 1
(( 1 1) )(0) 1, (1) .nny y e+

−
+= =  

Here ( 1)ny +  is the ( 1)thn+  approximation for ( ).y x  The domain [0, 1] is divided into 10 equal subintervals and 

the proposed method is applied to the sequence of linear problems (42) Numerical results for this problem are presented in 

Table 4. The maximum absolute error obtained by the proposed method is 1.138449x10-5. 

Table 3: Numerical Results for Example 3 

x Exact Solution Absolute Error by 
Proposed Method 

0.1 9.946538E-01 2.324581E-06 
0.2 9.771222E-01 1.090765E-05 
0.3 9.449012E-01 3.635883E-05 
0.4 8.950948E-01 4.988909E-05 
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Table 3: Contd., 
0.5 8.243606E-01 4.547834E-05 
0.6 7.288475E-01 3.725290E-05 
0.7 6.041259E-01 1.931190E-05 
0.8 4.451082E-01 8.672476E-06 
0.9 2.459602E-01 7.867813E-06 

 
Table 4: Numerical Results for Example 4 

x Exact Solution 
Absolute Error by 
Proposed Method 

0.1 9.048374E-01 1.788139E-07 
0.2 8.187308E-01 5.304813E-06 
0.3 7.408182E-01 5.960464E-06 
0.4 6.703200E-01 9.417534E-06 
0.5 6.065307E-01 1.138449E-05 
0.6 5.488116E-01 2.086163E-06 
0.7 4.965853E-01 1.043081E-06 
0.8 4.493290E-01 8.344650E-07 
0.9 4.065697E-01 2.235174E-06 

 
Example 5: Consider the nonlinear boundary value problem 

(10) 22 , 0 1xy y e y x′′′− = < <                                                                                                                   (43) 

subject to 1 1(0) 1, (1) , (0) 1, (1) ,y y e y y e− −′ ′= = = − = − 1(0) 1, (1) ,y y e−′′ ′′= =  

1(0) 1, (1) ,y y e−′′′ ′′′= − = −  (4) (4) 1(0) 1, (1) .y y e−= =  

The exact solution for the above problem is y = e-x.  

The nonlinear boundary value problem (43) is converted into a sequence of linear boundary value problems 

generated by quasilinearization technique [22] as 

(10) 2
( 1) ( ) ( 1) ( )][4 2[ ] 0,1,2, ,3,...x x
n n n ny y e y y y e n+ +′′′− − = − =                                                                   (44) 

subject to 1
( 1) ( 1)(0) 1, (1) ,n ny y e−

+ += = 1
( 1) ( 1)(0) 1, (1) ,n ny y e−

+ +′ ′= − = − ( 1)(0) 1,ny +′′ = 1
( 1)(1) ,ny e−

+′′ =  

( 1)(0) 1,ny +′′′ = −  1
( 1)(1) ,ny e−

+′′′ = −  (4) (4) 1
(( 1 1) )(0) 1, (1) .nny y e+

−
+= =  

Here ( 1)ny +  is the( 1)thn+  approximation for ( ).y x  The domain [0, 1] is divided into 10 equal subintervals and 

the proposed method is applied to the sequence of linear problems (44). Numerical results for this problem are presented in 

Table 5. The maximum absolute error obtained by the proposed method is 1.138449x10-5. 

Example 6: Consider the nonlinear boundary value problem 

(10) 1114175
( 1) , 0 1

4
y x y x= + + ≤ ≤                                                                                                       (45) 

subject to y(0)=1, y(1)=0, 
1

(0) ,
2

y
−′ = (1) 1,y′ = 1

(0) ,
2

y′′ = (1) 4,y′′ = 3
(0) ,

4
y′′′ =  (1) 12,y′′′ = (4) 3

(0) ,
2

y = (4)(1) 48.y =  
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The exact solution for the above problem is 
2

1.
2

y x
x

= − −
−

 

The nonlinear boundary value problem (45) is converted into a sequence of linear boundary value problems 

generated by quasilinearization technique [22] as 

(1 0 ) 10 10
( 1 ) ( ) ( 1) ( ) ( )

1 4 1 7 5 1 1 1 4 1 7 5
( 1) ( 1) (1 1 0 ), 0 ,1, 2 , ...

4 4n n n n ny x y y x y x y n+ +
×− + + = + + + − =              (46)  

subject to y(n+1)(0)=1, y(n+1)(1)=0, 
( 1)

1
(0) ,

2ny +
−′ =  

( 1 ) (1) 1,ny +′ =  
( 1)

1
(0) ,

2ny +′′ =  
( 1 ) (1) 4 ,ny +′′ =  

( 1)

3
(0) ,

4ny +′′′ = ( 1 ) (1) 1 2 ,ny +′′′ = ( 1)
( 4 ) 3

(0) ,
2ny + = ( 1)

( 4 ) (1) 48.ny + =  

Here ( 1)ny +  is the ( 1)thn+  approximation for ( ).y x  The domain [0, 1] is divided into 10 equal subintervals and 

the proposed method is applied to the sequence of linear problems (46). Numerical results for this problem are presented in 

Table 6. The maximum absolute error obtained by the proposed method is 3.887713x10-5. 

Table 5: Numerical Results for Example 5 

x 
Exact 

Solution 
Absolute Error by 
Proposed Method 

0.1 9.048374E-01 1.788139E-07 
0.2 8.187308E-01 5.304813E-06 
0.3 7.408182E-01 5.960464E-06 
0.4 6.703200E-01 9.417534E-06 
0.5 6.065307E-01 1.138449E-05 
0.6 5.488116E-01 2.086163E-06 
0.7 4.965853E-01 1.043081E-06 
0.8 4.493290E-01 8.344650E-07 
0.9 4.065697E-01 2.235174E-06 

 
Table 6: Numerical Results for Example 6 

x 
Exact 

Solution 
Absolute Error by 
Proposed Method 

0.1 -4.736842E-02 2.756715E-07 
0.2 -8.888889E-02 3.091991E-06 
0.3 -1.235294E-01 1.531094E-05 
0.4 -1.500000E-01 3.047287E-05 
0.5 -1.666667E-01 3.887713E-05 
0.6 -1.714286E-01 3.656745E-05 
0.7 -1.615385E-01 2.184510E-05 
0.8 -1.333333E-01 8.359551E-06 
0.9 -8.181816E-02 3.889203E-06 

 
CONCLUSIONS 

In this paper, we have deployed a Galerkin method with sextic B-splines as basis functions to solve a general 

tenth order boundary value problem. The sextic B-splines basis set has been redefined into a new set of basis functions 

which vanish on the boundary where the Dirichlet, Neumann, secondary order derivative, third order derivative and fourth 

order derivative types of boundary conditions are prescribed. The proposed method has been tested on three linear and 
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three nonlinear tenth order boundary value problems. The numerical results obtained by the proposed method are in good 

agreement with the exact solutions available in the literature. The objective of this paper is to present a simple and accurate 

method to solve a general tenth order boundary value problem. 
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